COPYRIGHT RESERVED VKS(H-3) - Phy (5)

2021

Time : 3 hours

Full Marks : 100
Pass Marks: 45
Candidates are required to give their answers in their own words as far as practicable.

The questions are of equal value.
Answer five questions selecting at least one from each Group in which
Q. No. 1 is compulsory.

1. Choose the correct answer from the given alternatives:
(a) Divergence of vector \vec{D} is equal to :
(i) $\operatorname{div} \vec{D}=\vec{\nabla} \cdot \vec{D}$
(ii) $\operatorname{div} \vec{D}=\vec{\nabla} \times \vec{D}$
(iii) div $\mathrm{D}=\overrightarrow{\mathrm{D}} \times \vec{\nabla}$
(iv) None of these
(b) The gradiant of any position vector is:
(i) 0
(ii) 2
(iii) 3
(iv) 1
(c) Which of the following theorem use the Curl operation?
(i) Green's theorem
(ii) Gauss divergence theorem
(iii) Stoke's theorem
(iv) Maxwell equation
(d) Stoke's theorem is in relation between:
(i) Line integral and surface integral
(ii) Line integral and volume integral
(iii) Surface integral and volume integral
(iv) None of these
(e) The maximum value of θ is spherical coordinates can be :
(i) $\pi / 2$
(ii) π
(iii) 2π
(iv) None of these
(f) A force \vec{F} is conservative, if :
(i) $\vec{\nabla} \times \vec{F}=0$
(ii) $\vec{\nabla} \cdot \vec{F}=0$
(iii) $\vec{\nabla} \times \vec{F}=$ constant
(iv) $\vec{\nabla} \cdot \overrightarrow{\mathrm{F}}=$ constant
(g) In classical mechanics we study the motion of :
(i) Microscopic object
(ii) Macroscopic object
(iii) Both (i) and (ii)
(iv) None of these
(h) Hamiltonian is given by:
(i) Sum of kinetic and potential energy
(ii) Different of K. E. and P. E.
(iii) Both (i) and (ii)
(iv) None of these
(i) If there are n particles, the number of generalised co-ordinates in Lagrange's square are :
(i) $\mathrm{n}=\mathrm{N}-\mathrm{K}$
(ii) $\mathrm{n}=3 \mathrm{~N}-\mathrm{K}$
(iii) $n=3 N$
(iv) None of these
(j) Work down by external force in N -particles system is known as :
(i) Work
(ii) Total work
(iii) Virtual work
(iv) None of these
(k) The number of independent ways in which mechanical system can move without violating any constrant is called :
(i) Constraint
(ii) Number of freedoms
(iii) Degree of freedom
(iv) Generalized coordinate
(I) To determine the value of Lagrangian L we assume :
(i) Kinetic energy
(ii) Potential energy
(iii) Both (i) and (ii)
(iv) None of these
(m) Quantum of electromagnetic energy is called :
(i) Particles
(ii) Photons
(iii) Waves
(iv) Energy
(n) Gas atoms that exert negligible electrical force on each other are :
(i) Molecule
(ii) Compound
(iii) Isotopes
(iv) Isolated atoms
(o) The wave function of particles lies in which region?
(i) $\mathrm{x}>0$
(ii) $\mathrm{x}<0$
(iii) $0<x<$ L
(iv) $x>V$
(p) The minimum energy possessed by the particle in a box?
(i) Zero
(ii) $\frac{\pi^{2} \hbar^{2}}{2 m L^{2}}$
(iii) $\frac{\pi^{2} \hbar^{2}}{2 m L}$
(iv) $\frac{\pi^{2} \hbar}{2 m L}$
(q) To solve Schrodinger's equation we need Potential and :
(i) Boundary condition
(ii) Physical requirements of system
(iii) Both (i) and (ii).
(iv). None of these
(r) Schrodinger equation is a:
(i) 1st order differential equation
(ii) Second order differential equation
(iii) Both (i) and (ii)
(iv) None of these
(s) In bound state have energy E and Potential V then :
(i) $E<V$
(ii) $E>V$
(iii) $E=V$
(iv) None of these
(t) If Lagrangian of a conservative does not contain time explicity, then :
(i) $\mathrm{T}-\mathrm{V}=$ Constant
(ii) $\mathrm{T}+\mathrm{V}=$ Constant
(iii) $\mathrm{T}=0$
(iv) $\mathrm{V}=0$

Group - A

2. What is Laplace's equation ? Find solution of Laplace's equation in Cartesian Co-ordinates.
3. What is divergence of a vector? State and prove Gauss divergence theorem.
4. State the residue theorem and prove it.

Group - B

5. Derive Langrange's equation of motion for conservative system.
6. Discuss the harmonic oscillator problem using Hamilton Jacobi method.
7. Obtain Euler's equation of motion of regid body.

> Group - C
8. State and prove Heisenberg uncertainty relation.
9. Describe a hydrogen atom with a quantum mechanical approach.
10. Explain Hermiltion operator and obtain its eigen value.

