COPYRIGHT RESERVED VKS(H-3) — Phy (7)

2021

Time : 3 hours Full Marks : 100 Pass Marks : 45

Candidates are required to give their answers in their own words as far as practicable. The questions are of equal value. Answer any **five** questions, selecting at least

one question from each group in which

Q. No. 1 is compulsory.

1. Choose the correct option of the following :

- (a) The materials, whose valence band are half filled, are called as :
 - (i) Conductors
 - (ii) Semi-conductor
 - (iii) Insulators
 - (iv) All of these

YN - 3/3

(Turn over)

- (b) In n-type semiconductor, the Fermi energy is situated :
 - (i) Just below the V.B.
 - (ii) Just above V.B.
 - (iii) Just below of C.B.
 - (iv) Just above the C.B.
- (c) A neutrino is emitted in :
 - (i) α -decay
 - (ii) β -decay
 - (iii) γ-decay

(iv) All of these

- (d) The average binding energy of a nucleus is :
 - (i) 8 ev
 - (ii) 8 kev
 - (iii) 8 Mev
 - (iv) 8 Bev
- (e) lonosphere is a :
 - (i) Cold plasma
 - (ii) Hot plasma
 - (iii) Both Cold and Hot plasma
 - (iv) None of these

YN - 3/3

(f) The Debye length D is :

(i)
$$D = \left(\frac{\epsilon_0 KT}{2N_0 e^2}\right)^{-\frac{1}{2}}$$

(ii)
$$D = \left(\frac{\epsilon_0 KT}{2N_0 e^2}\right)^{\frac{1}{2}}$$

(iii)
$$D = \left(\frac{\epsilon_0 KT}{2N_0 e^2}\right)^{3/2}$$

(iii)
$$D = \left(\frac{\epsilon_0 KT}{2N_0 e^2}\right)^{5/2}$$

(g) If \overrightarrow{a} , \overrightarrow{b} , and \overrightarrow{c} are the translation vectors of a lattice and \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} are reciprocal lattice vectors then :

(i)
$$\overrightarrow{a} \cdot \overrightarrow{A} = 0$$

(ii)
$$\vec{a} \cdot \vec{A} = 1$$

(iii)
$$\overrightarrow{A} \cdot \overrightarrow{a} = 2\pi$$

(iv) None of these

YN - 3/3

(Turn over)

- (h) The ratio of Helium and Neon gases in the He-Ne gas LASER is :
 - (i) 1:1
 - (ii) 5:1
 - (iii) 8:1
 - (iv) 10:1
- (i) Optical pumping is used to produce :
 - (i) UV-radiation
 - (ii) IR radiation
 - (iii) Normal population
 - (iv) Population Inversion
- (j) The nature of lattice of diamond is :
 - (i) fcc lattice
 - (ii) bcc lattice
 - (iii) hep lattice
 - (iv) dual inter latice structure
- (k) Bragg's law of diffraction is :
 - (i) $2d \sin\theta = n\lambda$
 - (ii) $2d \cos\theta = n\lambda$

YN - 3/3

(4)

- (iii) d sin θ = 2n λ
- (iv) $d \cos\theta = 2n\lambda$
- (I) Power method was devised by :
 - (i) Laue
 - (ii) Bragg
 - (iii) Debye and Scherrer
 - (iv) None of these
- (m) The size of nucleus is of order of :
 - (i) 10^{-8} m
 - (ii) 10^{-10} m
 - (iii) 10^{-14} m
 - (iv) 10⁻²⁸m

(n) If M is the atomic mass and A is mass

number the $\frac{M-A}{M}$ is called :

- (i) Binding energy
- (ii) Fermi energy
- (iii) Mass defect
- (iv) Packing fraction

YN - 3/3

(Turn over)

- (o) Which atom model explains the fine structure of spectral lines ?
 - (i) Sommerfield model
 - (ii) Thomson model
 - (iii) Bohr's model
 - (iv) Rutherford model
- (p) At high magnetic fields, the splitting of spectral lines is disturbed, this effect is called :
 - (i) Stark effect
 - (ii) Inverse Zeeman effect
 - (iii) Paschen-back effect
 - (iv) Anomalous Zeeman effect
- (q) The Zeeman effect could not be proved by :
 - (i) Quantum mechanics
 - (ii) Bohr's model
 - (iii) L-S coupling
 - (iv) Hamiltonian operator
- (r) Series that lie in the infrared region of electromagnetic spectrum :
 - (i) Lyman series

YN - 3/3

- (ii) Ballmer series
- (iii) Bracket series
- (iv) Both (i) and (ii)
- (s) The number of splitting levels in 2p orbit would be :

(i)	1	(ii)	2
(iii)	3	(iv)	4

(t) In laboratory plasma occurs in discharge of electricity through :

(i)	Solid	(ii) Liquid	
\! /			

(iii) Gas (iv) None of these

Group – A

- 2. Discuss Saha theory of Thermal Ionisation and mention its application.
- 3. What are conditions for existence of plasma? Derive an expression for Debye length and potential.
- Establish the convarience of Maxwell's electromagnetic field under Lorentz transformation.

YN - 3/3

(7)

- What is Kronig-Penney model ? Discuss how the propagation of electron wave in this model leads to the band structure of energy levels.
- 6. Explain reciprocal lattice. Obtain Bragg's law in term of reciprocal lattice.
- Derive Boltzman Transport equation and obtain an expression for electrical conductivity of metals.

Group – C

- 8. Discuss the Bohr-Sommerfield theory of Hydrogen atom.
- 9. What is normal Zeeman effect ? Give the theory of normal Zeeman effect for single valence electron system. Draw its transition.
- 10. Give an account of nuclear shell models. Discuss the production of this model.

